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1 Outline

e An alternative to lattice - diagonalize the Hamiltonian
e On the Light Front - numerics: Light Cone Discretization
e Simplifications (I):
large N - planar diagrams - single traces
less dimensions - reductions
even quantum mechanics (but at N — 00)
supersymmetry
e QCD equations: eigenequations for Hy ¢
coupled Bethe-Salpeter equations on the LC
simplifications (II) - Coulomb Approximation
e 't Hooft equations with many partons
e Solutions — numerical

e Solutions — analytical



2 Diagonalizing Hamiltonian

2.1 Omne way: Light Cone Discretization

PY = Yp/, pf>0

K = Y ki, K,k —integer (>0),

Cutoff K’ = partitions {ki, ko, ...} = states
[{k}) = Trlal (k1)a' (ky)...a" (k,)]]0)

{k}) = {RHHKF}) = E,
[ Brodsky et al. ]



2.2 Second way: integral equations in the continuum

e Different cutoff (on parton multiplicity) — directly in the continuum

H|®) = M?|D)
( —
D) — D (x1, 29, ..., 2) < —
S
" }¥— ) () )
- 1 = Tl t+ T |1 r— t+t T =
S — A S —

M*®,(z1...2)) =ARP, + BRP,_o+C R P



e EQUATIONS

D) = n%;/[d:c]é(l — =Ty — . 2D (X1, T, .2y Tr[al (x1)al (22) . . .

EXAMPLE 1: QCD, ( fundamental fermions )

M2f(z) = m? (:zlc—i_lix

)f($)+7T/() dy

f(z) = Pofz,1 — )

a'(x,)]|0)



EXAMPLE 2: SY M, restricted to the two-parton sector

There are two coupled equations in the bosonic sector

M) = (1 +1> o) + ;\ Pvp ()

1— z(l —x)
/0 4:;:: Y2 —x—y) [Qﬁbb((?;)_—gb;( )]dy N ;;T [ v i . j{lf(—y)x)dy
M?¢ps(z) = m (i + i x) Or5()
2) /0 <z5ff - gff( Nay ;;T Ix (xiy) f(bf(f)y)d
and the single one in the fermionic sector
M yp(x) = (n;% + 1,”?;) @7 (2) 2?%%1;

(@ +y)Por(y) — dpr(x)] A 1 1 Por(y)
B v e a1 "



Example 3: Y My with addjoint fermionc matter - all parton-number sectors

p
M?¢,(z1...x,) = mgbn(scl . Tp)
Iy

A 1 T1+T2
+ (ot a2 b dydn(y, ©1+ T2 — Y, T3 .. Tp)
A T1+79 dy
™ 7r/0 W{¢n<xl7x27x3---xn>
—n(y, w1 + T2 — Yy, 3. .1, }
+)\ mdy xl—ydqu 2(yZCL’—y—Z:E2 SC) 1 B 1
A 1 1

+ qun_g(:cl + To + X3, T4 .. xn)

(x1 4+ 22)* (17 — x3)?
+ cyclic permutations of (xy...x,)



3 This work (JHEP 1106:051, 2011)

e N =1, SYM,on the LC
e Reduce D=4 — D =2 =— QCD, with addjoined matter
e The Coulomb Approximation - keep only most singular (IR) terms in H

1. diagonal in parton multiplicity — can study each p separately, here p =
2,3,4

2. eigenvalues — spectrum
3. eigenstates — wave functions also in x - space

4. confinement — determine string tension



4 Coulomb divergences

e [R divergences (logarithmic) couple different multiplicity sectors
e Coulomb divergences (linear), but they cancel within one multiplicity
e Can be done independently for each parton multiplicity p

A possibility

e — Solve Coulomb problem first, and then successively add radiation

Simplified Hamiltonian SY M, =— SY My = Heooump

ua 00 k dq
Hgoucliomb /0 dk / (5)
quartic d T
HCoulomb /0 dpldp? Tr[ApprgB 2+QAP1—C]]
dq
+ 2 =, Tr(Al B! By g Ap,—q)

q°



5 Two partons

kK—k), k=1,.K—1 (6)

(k| H|E) = |®,) = &, (k)= D,(d)-) (7)

10} 1 0sf 105¢

08} 104f 104f

06} 103} 103}

04} 102} 102}

02} 101} 1o0af

00k ‘ ‘ J ook ‘ ‘ ‘ J ok ‘ ‘ ‘ ‘
2100 =50 0 50 100 -100 -50 0 50 100 -100 -50 0 50 100

05" ‘ ‘ ‘ 105t ‘ ‘ ‘ 1 05¢ ‘ ‘ ‘ ‘

04+ 1 04¢ 1 04t

03} 103; 103; ]
02} 102¢ 102; ]
0.1} 101¢ 101} :
00" 400 ‘ ‘ - 00 ‘ ‘ ‘

~100 -50 0 50 100 -100 —50 0 50 100 -50 0 50 100

Figure 1: pn(dlg),p — 2, K = 200, n = 1, 25, 50, 100, 150, 199.
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Linear spectrum for two partons
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Figure 2: Eigenenergies of the, p=2, excited states as a function of the relative separation
between two partons, K = 30, 50, 100, 200.
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6 Three partons - generalization of the ’t Hooft solution to many bodies

ko, K — k1 — ko), ki=1,,K—2, k=1, K—Fk —1

k1, ko| H| KL KDY = | @) = Dk, ko) @, (dys, dos)
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Figure 3: P71 <d137 d23)
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Figure 4: ‘plO(dl?n d23)

14



Figure 5: p5o(d137 d23)
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Figure 6: p100(d13, da3)
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Figure 7: P00 (d13, da3)
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Figure 8: p300(d13, d23)
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Figure 9: pago(di3, da3)
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The highest state

Figure 10: p406(d137 d23)
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And on the Dalitz plot
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Figure 11: Series B. As above but on the Dalitz plot. Now diquarks are allowed, d,,;, = 0
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Linear spectrum for three partons

one series — K=40,60,80,100
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Figure 12: Eigenenergies of the, p=3, excited states as a function of the combined length of
strings stretching between three partons.
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Four partons

Figure 13: Structure of eigenstates with four partons. Contour plots in three relative distances
(dh4, day, dsy) for states no. 1,9,35,60,100,165 spanning the whole range of states for K = 12,
Tmar = 106D.
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7 Analytic solutions

e Massless quarks

flp) = f(k) _ .
/0 dk P Ecf(p) — Fig.2
e Assume that the singularity dominates (e.g. for large E¢ ) [Kutasov, '95]
fp)—f (k)

f(k) = exp (zkA) — Ec=MAl, A=ry—nr (8)

e a generic solution - A arbitrary
e boundary conditions
e massless quarks — Neumann: f'(0) = f'(P) =0  [Neuberger, '04]

_n2r _n
A=35% =30

fn(k) = cos (mnk/P) = cos (mnxp) 't Hooft, "74]
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Two partons: numerics vs. analytics
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Figure 14: Comparison of numerical (DLCQ) and analytical (WKB) results for the two LC
wave functions in the two parton sector
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8 Analytic solution in many parton sectors

e Strategy:
general solution of the asymptotic equation for n partons
derive boundary conditions (BC) for n partons
identification of independent (and complete) set of solutions sat-
istying BC

classifying solutions w.r.t. their behaviour under Z,
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e n-parton 't Hooft equation

)‘/p1+p2 dk¢n(p17p27p3 . pn> — 77bn(]€7pl —|_p2 - kap3 .- pn)
2 (p1 — k)2

+cyclic permutations of (p1...p,)

— EC%(ZH .- -pn)

e phase space

pr4+p+...+p, =P, p;, >0

only n — 1 independent momenta,
e.g. forn =2 to(p1, P —p1) = f(p1)

e phase space boundaries: p; =0, 1=1,...,n.

27
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e Boundary conditions - two partons

M f(x) = m” (iﬁ 1 )f(:c) - 7);PV/01 ay! ) = I

l —=x

em >0 — Dirichlet

oem =10 —— Neumann

e BC for n massless partons: generalization of Neumann conditions

p1=O:((92—25’1)

pi=0: (041 — 2<‘9+az D=0, 2<i<n-—2
Pn1=0 1 (Oh—2 —20,-1)Y =0

Dy = (81+c’9n )Y =0

| Z. Ambrozinski |

BC follow from a requirement of cancellation of IR divergences at the
boundaries of the phase space.
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e generic solution of asymptotic (fg EC— .. .)equatlons in n par-
ton sector

?7D(]{71, Cee /{Tn) — exp <i]€17”1 + 1koro + ... + Z]{n’l“n)

(11)

e asymptotic eigenvalue

A
EC’ = 22?:1‘A17i+1|, Ai,j =T, =Ty, n+1=1. (12)

e How to construct solutions which satisty BC 77

9 Three partons

e New feature of n > 2 sectors: degeneracy — use more trial functions
with the same eigenvalue
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Sufficient set for n = 3

exp (+2(k17r1 + korg + k3rs
—i(k1r1 + ksro + kors)) exp (12Prq)

( )
( )
(kory + ksra + kyrs))
( )
( )

|
o
S
o

—1(k3r1 + koro + Kk173)) exp <22PT2>
exp (+i(ksry + kiry + kors
= exp (—i(kory + k1o + k37"3>> exp (i2Pr3)

il
© o
s
ol
n
N

Or in terms of independent momenta and coordinate differences

i
(5
V3
Py
Vs
Vs

exp (4 '(klAlg + koAg3)) exp (i Prs)

]{1A21 -+ kgAgg)) exp (ZP(’I“;; -+ Alg -+ A12>)
(K Agz -+ kgAm)) exp (ZP(Tg -+ Agg))
(k113 + koA1s)) exp (1P (13 + Aog + Agp))
(k1A + koAsy)) exp (1P (13 + Aq3))
(k1Aso + koAgy)) exp (i Prs)

™

8

=
A/\/;\/_\/\
/N 7N N N N
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e Necessary condition for BC: on each plane some subsets have to have the
same dependence on all other (not fixed) variables.

E.g. on k1 = 0 boundary cancellations may occur only within
(1,2) , (3,4) and (5,6) pairs.

e [ndeed, for integer (in units of 2w/ P) A’s, all BC’s are satisfied by

. T S
Urs(k1, ko) = X0 jahy = M9t Njg = % Agg = 5 T8 even

e /3 covariant solutions can be constructed as well

Urso(k1, ko) = 1 + Aibs 4+ Nab3 + 1 + 1y + g

_ 1 |
T+V; Aggzs Y v==4-, A= rs odd.
2 ’ 2 3

this quantization follows from

exp (1PA13) = N, exp (iPAg) = A,

Ay =

which generalizes the exp (iPAz) = #£1 from the two parton case.
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e all pairs (7, s) generate overcomplete sets
e for a complete basis it suffices to use

(r,s) = (2n,2l) and/or (21,2n), 0<1<[n/2|.
for each eigenvalue E¢ = gLa and v = 0,
where the ”combined length of strings” L = 2n .

— each E¢(n) has degeneracy

_|n+1, n even
In = n, n odd

and for v = 1/3:
L'=2n+1+v, L =9n+3—v,
(r,s)) =@2n+1,20+1), (r,s) =20 +1,2n+3)

32
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9.1 Comparison with numerical results
e Profiles of non degenerate states agree very well, c.f. Table 1 for v = 1/3

e Eigenenergies differ by 50% for the lowest state.
The discrepancy goes down to 30% around no = 13 +» WKB.

num. —no's anal. — (r,s) | <numlanal > |* LP/27 Ewma Enum
1 0,0) 1.0 0 0 0

4 (2,2) 96 2 305 220

(2,3) (1,1) 96 4/3 263 113

(5,6) (1,3) 93 8/3 526 29.3

(7,8) (3,3) 91 10/3 658 39.0

(12,13) (3,5) 87 14/3 921 582

Table 1: First six states in the v = 0, 1/3 sector, comparison with numerical (DLCQ) calcu-

lations.
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e for higher states (i.e. with degeneracy): analytical solutions with de-
generacy ¢ correspond uniquely to a group of g numerical eigenstates
(substantial overlaps)

Ec En/o

200 - T

150 T

100 - n

50

0.0 0.5 1.0 15 2.0

Figure 15: Correspondence between the numerical (left) and analytical (right) spectra. Only Z3
singles are shown. Analytic levels are g-fold degenerate, here g=1,3,3,5,5 and 7 respectively.
p=13
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e High cigenvalues - can test completeness and WKB by comparing the
entropy, or rather the number of states with energy below E.
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Figure 16: Energy distribuant N(FE, 1/K) and its extrapolation to K = oo
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10 Four partons

e Trial states are direct generalization of symmetric sums from the n = 3
case.

e They are characterized by a triple of integers (dio, dog, d34), d = AP/27.
e They DO NOT satisty our boundary conditions !

e However their simple combinations DO .
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Procedure

1. Generate all sets of above triples which satisty
YHdiivi] = L = 2n, (16)
for a given n.
2. Identity linearly independent subset of corresponding trials

3. Search for the linearly dependent combinations on the boundary planes
by inspecting generalized Wronskians of corresponding partial deriva-
tives.

4. Identify combinations satistying our boundary conditions.
5. Organize states found in pt. 4 by choosing some labeling scheme.

6. Check completness of this basis as in the three parton case.
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Results

. Indeed a series of simple linear combinations, which satisty boundary
conditions (BC) on all boundary planes, exists.

. Only combinations, which appear, contain one (singles), two (doubles)
and three (triples) basis functions from step (2).

. Each independent trial function from step (2) appears once and only once
in one of the combinations. All independent trials are used.

. Relative coefficients of all combinations found are very simple: all 1’s in
triples, and 1 and 2 in doubles. This finds a nice explanation upon the
detailed inspection below.

. All combinations are orthogonal even though the original basis, found in
2, was not.
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Figure 18: Solutions with 4 partons on the (dy2, dog) = (i, j) plane, together with the contour
plots (blue) of |dia| + |dog| + |a — dia — dog| = 2n — |al for fixed a = di + doz + d34 =
n,n—1,n—2, ..., n=13. Reflections across the black lines provide triples which satisty BC.
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numeric
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Figure 19:  profile: numeric (left) and analytic (right), y = z = 1.3
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Figure 20: (Y, z) contour plots of the same profile: numeric vs. analytic as above, x = 0
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Figure 21: Scale factor for four partons
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11  Arbitrary number of partons p

p = 5 - similar to p=4: trials, basis of independent solutions,
Wronskians = combinations which satisfy BC (more than triples: 4-,6-,12- plets)

—>Rules (emegred from analyzing p=4,5)

Rule I (to generate basis of trial solutions)

e generate all closed loops (made of p ”bits”) with size d and energy L
e mod out Z, and 17,

e sum over d at fixed L
Rule II (to construct combinations satisfying BC)

e Solutions with the same values of {d's} form combinations which satisfy BC’s.

e.g. (1,0,2,—3) and (0,1,2,—=3) for p =4
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Counting states ( for p <6 )

10

I | I I I | I I I | I I I | I I I | I I I | I I I | I I
2 4 6 8 10 12 14

Figure 22: Entropy of solutions (vs. M?/\) from the first six multiplicity sectors.

1.6 — 1.7
p(M) ~exp M/Ty, Ty= fﬁ & (1.3 —1.4) [Bhanot, et.al |
/I8
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12 Summary

e Need a string-like counting of states for arbitrary p > 4
e Interpretation of Ty - confirmation with higher p 7
e Green’s functions ——  solve the hierarchy by Gauss elimination !

e Add transverse degrees of freedom 77
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